理研ら,聴覚に関わるタンパク質の動きをイメージング

理化学研究所(理研)米ハーバード大学,東京大学の研究グループは,DNAナノテクノロジーを用いて世界最小のコイル状人工バネ「ナノスプリング」を作製し,聴覚に関わるメカノセンサータンパク質ミオシンVIの動きを捉え,アクチンフィラメントと強固に結合するメカニズムを分子レベルで明らかにした(ニュースリリース)。

細胞内に数多く存在するメカノセンサータンパク質は,物理的な力による機能制御を受け,細胞増殖,分化,形態形成や細胞死などの細胞レベルのふるまいに関わる。一方で“力がどのようにしてメカノセンサータンパク質の機能を制御するのか”を調べる技術は乏しく,不明な点が多くある。

従来の技術では,タンパク質の機能や動態を1分子レベルで可視化すると同時にタンパク質に力を加えることは難しく,メカノセンサータンパク質を“効率よく,観ながら触る”新たな技術の開発が求められていた。

国際共同研究グループは,DNAを編む「DNAオリガミ」と呼ばれる技術を用いて,タンパク質サイズの世界最小のコイル状人工バネ「ナノスプリング」を作製した。そして,自律的に力を発生するモータータンパク質でもあるミオシンVIを結合させ,ナノスプリングを引き延ばす過程を蛍光1分子イメージングで超解像ナノ計測し,ミオシンVIが力に応答して機能を調節する機構を可視化した。

その結果,ミオシンVIは力を受けると,細胞骨格であるアクチンフィラメントへの結合様式を変化させて強固な結合状態(アンカー結合状態)を作ることが分かった。ミオシンVIは内耳に存在するステレオシリアの形態維持を担っている。ステレオシリアが受けた音(空気の振動)による物理的な力刺激がミオシンVIに伝わり,アクチンフィラメントとアンカー結合状態を生じることで,その形態を安定に維持していることが示唆されるという。

研究で開発したナノスプリングはバネ定数のチューニングが可能でプログラム能力も高いため,さまざまなメカノセンサータンパク質への応用が可能。電子顕微鏡や原子間力顕微鏡との併用も可能なため,力を加えながら分子構造や動態を観る手法として必須のツールとなることが期待できるとしている。

その他関連ニュース

  • 理研ら,光応答タンパク質の反応過程を撮影 2018年06月15日
  • 東大ら,タンパク質のダイナミックな変化を1分子観察 2018年05月22日
  • 産総研ら,蛍光色素付き発光基質で生物発光を多色化 2018年05月18日
  • 京大,光超音波トモグラフィで3D血管地図を作成 2018年05月02日
  • 東大,細胞から臓器までpHを蛍光で簡便に計測 2018年05月01日
  • 理研,生体を構成する原子のイオンの散乱因子を電顕と放射光で決定 2018年05月01日
  • 慶大ら,表面増強ラマンでがんを非標識で可視化 2018年04月23日
  • 産総研ら,酸化CNTによる高輝度近赤外蛍光プローブを開発 2018年04月20日