香川大ら,塩による微細成膜・転写技術を確立

香川大学と和歌山県工業技術センターの研究グループは,金属薄膜の結晶性制御にヘテロエピタキシャル成長を利用することにより,ナノ光学領域における表面電磁波(表面プラズモン)の光性能およびその微細加工精度を飛躍的に向上できる成膜・転写技術を確立した(ニュースリリース)。

従来のプラズモニクス分野では,金属薄膜の結晶性について充分な議論がなされておらず,多結晶金属薄膜の利用が一般的だった。

近年,金属由来の光損失から,エピタキシャル成長を利用した単結晶金属薄膜が注目される中,研究グループは塩(NaCl)の単結晶に着目し、これを基板とすることで基板上に成長させた単結晶金属薄膜のみを取り出す技術を開発した。

具体的には,単結晶NaCl(001)基板上での金属ヘテロエピタキシャル成長による大面積かつ高品位な単結晶金属薄膜を成膜する技術とNaCl基板の溶解を組み合わせることで,基板を限定しない単結晶金属薄膜の形成を実現した。10×10mm2の大面積において,表面粗さが0.81nmの平滑な薄膜が得られ,結晶面に沿った微細加工から高精度な形状を維持した。

加工した単結晶構造の表面プラズモンに由来する光学特性は,尖鋭かつ高光強度な共鳴波長を観測しており,これはBPT分子の表面増強ラマン散乱特性からも通常より5倍の増強度となり,単結晶薄膜の優位性を顕著に示した。

この成果を用いることで,基板選択の自由度が増し,従来困難であったガラスやペットフィルムなどの非晶質基板上における大面積な金属単結晶薄膜を実現している。

また,微細加工精度や光学特性(光センシング能を含む)の向上をそれぞれ達成しており,将来的には,プラズモニックデバイスを実現するための金属薄膜の成膜基盤技術になると期待されるという。

研究グループは,ナノメートルサイズに光を効率的に閉じ込め,これを制御することで,現在の電子回路を光回路に置き換えた各デバイスの高集積・高感度・高効率および高速化,低消費電力化を実現するとしている。

その他関連ニュース

  • 理研,プラズモン共鳴による有害分子の分解を確認 2018年05月07日
  • 理研,レーザーで超高感度マイクロ流体SERSセンサーを作製 2018年05月02日
  • 理研,X線光渦で回折限界以下の微細構造を形成 2018年04月19日
  • 東大,右/左巻きナノ構造を光で作り分けに成功 2018年04月18日
  • ショット,薄板ガラスへの精密加工技術を開発 2018年03月28日
  • OIST,大面積プラズモンバイオセンサーを開発 2018年02月26日
  • 名大ら,数万気圧極低温下での単結晶X線結晶構造解析に成功 2018年01月29日
  • 日板,微細貫通穴ガラス基板を開発 2018年01月16日