理研,マイクロ流体素子内部に金属配線をレーザーで作成

理化学研究所(理研)の研究グループは,フェムト秒レーザーを用いて,ガラスマイクロチップ内部の3次元マイクロ流体構造へ自在に金属薄膜を堆積させることで金属配線を施す技術を開発した(ニュースリリース)。

そして,この技術で作製した「エレクトロフルイディクス」(マイクロ流体素子に,電気・電子素子を集積化したバイオチップ)での閉空間内で,ミドリムシの運動方向を3次元に制御することに成功した。

微生物や生細胞の運動方向を自在に制御することは,それらの動態・機能を解明するために重要となる。特に高速で運動する微生物の鞭毛などの部位を詳細に分析するには,その動きをさまざまな方向から観察することが不可欠。観察を効率的に行なうには,微生物や生細胞を限られた閉空間に入れて,その動きを“3次元に制御すること”が必要。

研究グループは,マイクロ流体デバイス内の電界方向を制御し,電気的に微生物の運動方向を制御する方法を考案した。ガラスマイクロチップ内部に3次元マイクロ流体構造を構築した後,超短パルスかつ高強度のフェムト秒レーザーで流体構造内部を選択的にアブレーションすることで,流体構造内部へ自在に金属薄膜を堆積させ,金属配線を施す技術を開発した。

一般的な金属薄膜堆積法では,このように固体の中空構造内部にあとから選択的に金属薄膜を形成することは不可能。これは,フェムト秒レーザーの多光子吸収を用いることで初めて実現した。

この技術を用いて,任意の箇所に電極を配置したエレクトロフルイディクスと呼ばれるバイオチップを作製した。バイオチップ内の電界分布を時間的・空間的に制御することで,ミドリムシの運動方向を3次元に制御することに成功した。

この技術は,微生物や生細胞の微小な部位や高速運動する部位を効率的,かつ詳細に観察することができ,今後,微生物や生細胞の動態・機能の解明への応用が期待できるもの。また,電気化学バイオセンサーなどのエレクトロフルイディクス作製への応用も期待できるとしている。

その他関連ニュース

  • NEDO,高効率・高品質レーザー加工技術開発に着手 2024年04月05日
  • 東北大,レーザー微細加工の分解能を飛躍的に向上 2024年03月12日
  • 理研,超短パルスレーザーとエッチングで微細貫通穴作製 2024年01月12日
  • ギガフォトン,微細アブレーション加工用光源を納入
    ギガフォトン,微細アブレーション加工用光源を納入 2023年12月12日
  • 古河電工,青色レーザーを増強したBlue-IR発振器発売 2023年09月26日
  • 阪大,フェムト秒レーザー照射後の金属内部挙動観測 2023年09月01日
  • santec,500Wグリーンレーザー対応LCOSを開発 2023年08月30日
  • NAIST,数百万個の細胞画像を1秒で撮ることに成功 2023年07月18日