埼大,光合成の強光耐性の仕組みを解明

埼玉大学の研究グループは,光合成の強光耐性の新たな仕組みを解明した(ニュースリリース)。

近年,微細藻類を用いてバイオ燃料などの有用物質を生産する研究開発が数多く進められているが,強い太陽光の下で微細藻類の生育が制限される光阻害がボトルネックとなって,物質生産が低下してしまうという技術的課題に直面している。また,光阻害は農作物の生産を制限する大きな要因となっている。

研究グループは,これまでに光合成の光阻害のメカニズムの1つとして,強光下で発生する活性酸素によって光化学系IIの修復が阻害され,光阻害が促進することを見出してきた。さらに,光化学系IIの修復には新たなタンパク質合成が必要になるが,タンパク質合成を担う翻訳系の構成成分である翻訳因子EF-Tuが活性酸素の標的となって酸化失活することを明らかにしてきた。

光合成生物は一般に,より強い光環境で生育してその環境に慣れる(順化する)と,光合成の強光耐性が上がることが知られている。今回研究グループは,この強光順化という現象に着目して,光阻害の要因の1つであるEF-Tuの動きを,微細藻類シアノバクテリアを用いて解析した。

その結果,強光に順化したシアノバクテリアでは,EF-Tuの量が著しく増大していた。他の翻訳系の構成成分にはこうした量的変化が見られなかったので,翻訳系の中ではEF-Tuのみが強光に応答して量が増えたと考えられる。EF-Tuの強光応答のメカニズムを調べると,遺伝子の転写レベルで強光に応答して誘導されることがわかった。

また,強光順化したシアノバクテリアでは,強光下でタンパク質合成が活性化し,光化学系IIの修復能力が増大していることもわかった。光化学系IIの光阻害が著しく緩和していることを観察し,さまざまな光強度に適応させたシアノバクテリアで,EF-Tuの存在量と光化学系IIの強光耐性を比較すると,両者には極めて高い相関関係があることが明らかになった。

そこで,シアノバクテリアを遺伝子操作してEF-Tuの存在量を人為的に増やしてみたところ,光化学系IIの修復能力が上がり,その強光耐性が増大したという。

今回の研究で,強光に順化したシアノバクテリアは,EF-Tuタンパク質の量が増えて光合成の修復能力が上がり,光合成が強光に強くなることを突き止めた。研究グループはこの発見をもとに,微細藻類の強光耐性を高め,強い太陽光の下でも安定なバイオ燃料生産が可能になるとしている。

その他関連ニュース

  • 京大,光合成で生じたデンプンに新機能発見 2020年05月26日
  • 横市大ら,近視を発症・進行する遺伝子を発見 2020年05月19日
  • 岡山大,光でDNA組換え可能なマウス作製 2020年04月27日
  • 理研,光受容による遺伝子発現機構を解明 2020年03月17日
  • 筑波大ら,藻類葉緑体の成立途中段階を発見 2020年03月02日
  • 東大ら,野外光環境での植物増産に知見 2020年03月02日
  • 神戸大ら,ラン藻の高濃度D-乳酸生産技術を開発 2020年02月21日
  • 宮崎大,CO2濃縮装置を葉緑体へ導入 2020年02月20日