バンドギャップ(BG)制御されたグラファイト状窒化炭素の新規合成法の開拓~BG=2.7–0 eVの自在制御への挑戦~

1. はじめに

現在,エネルギー消費は増加の一途をたどり,温室効果ガスの放出も増加している1, 2)。脱化石燃料が唱えられる中,新たなエネルギー生産サイクルの確立に向けて基礎から応用まで広く研究が進んでいる。光エネルギーや電気エネルギーを用いたエネルギー変換システム,特に水や二酸化炭素,酸素などの低分子の改質反応は,燃料電池や金属−空気電池の要素反応であり,広く研究が進んでいる。これら反応の促進には,触媒が不可欠である。金属酸化物や金属錯体が,触媒として広く用いられているが,触媒の価格や安定性などの点で応用に向けて課題が残る。

図1 g-C3N4とグラフェンの構造と組成による物性変化
図1 g-C3N4とグラフェンの構造と組成による物性変化

著者は,グラフェンやグラファイト状窒化炭素(g-C3N4)など金属フリー材料を主とした光/電気化学触媒の開発/機能改質に注目した。グラフェンは導電性材料であり,その構造の一部に他元素をドープすることや他金属材料との複合化による触媒開発が進んでいる3, 4)一方,g-C3N4は,トリス-s-トリアジン骨格を基本骨格とするグラファイトに類似した2次元シート状分子である(図15)。バンドギャップが2.7 eVのn型半導体と知られ,光応答水分解触媒としての応用が期待されている。グラフェンへの窒素ドープ,または,g-C3N4への炭素ドープによって,CN系材料のバンドギャップを制御し,光触媒から電気化学触媒まで幅広い触媒開発が期待できる。安定なグラファイトへの他元素ドープは,特殊な工程が必要であるが,熱重合によって得られるg-C3N4への他元素ドープは容易に可能である。

ここではg-C3N4とグラフェンの中間領域にある炭素ドープg-C3N4について深い知見を得ることを目的とした。

この続きをお読みになりたい方は
読者の方はログインしてください。読者でない方はこちらのフォームから登録を行ってください。

ログインフォーム
 ログイン状態を保持する  
新規読者登録フォーム

同じカテゴリの連載記事

  • ITOおよびIZOに代わる酸化インジウム系透明導電材料開発の試み
    ITOおよびIZOに代わる酸化インジウム系透明導電材料開発の試み 工学院大学 相川慎也 2019年06月07日
  • 低温レーザー照射による機能性セラミックスのマイクロ配線化プロセス
    低温レーザー照射による機能性セラミックスのマイクロ配線化プロセス 山形大学 西山宏昭 2019年05月13日
  • ホログラム光学素子と信号処理を融合したイメージング技術
    ホログラム光学素子と信号処理を融合したイメージング技術 東京工業大学 中村友哉 2019年03月11日
  • 光デバイスの超高密度実装を可能とするFGHP<sup>®</sup>テクノロジー
    光デバイスの超高密度実装を可能とするFGHP®テクノロジー 鹿児島大学 水田 敬 2019年02月08日
  • 液晶性を活用した実用的な有機薄膜トランジスタ材料
    液晶性を活用した実用的な有機薄膜トランジスタ材料 東京工業大学 飯野裕明 2019年01月09日
  • 高複屈折性材料を指向した含硫黄液晶分子の開発
    高複屈折性材料を指向した含硫黄液晶分子の開発 豊橋技術科学大学 荒川優樹 2018年12月07日
  • 多層膜型フォトニック結晶による分光偏光同時イメージング
    多層膜型フォトニック結晶による分光偏光同時イメージング 宇都宮大学 篠田一馬 2018年11月09日
  • 食べられる再帰性反射材とその応用
    食べられる再帰性反射材とその応用 群馬大学 奥 寛雅 2018年10月04日