東大,小電流で磁極が反転する磁石を実現

東京大学の研究グループは,小さな電流を流すだけでN極とS極(磁化の向き)が反転する磁石を実現した(ニュースリリース)。

現在,強磁性体の電子のスピン自由度を用いて新たな省エネルギーデバイスを実現する試みが盛んに行なわれている。

通常,磁化反転には,電子のスピンの向きを磁化に受け渡す方法や,強磁性金属薄膜と非磁性金属薄膜を接合させた2層構造に電流を流すことによって生じるスピン軌道トルクという力を利用した方法などが用いられている。しかしこれらの方法では,一般的には107Acm–2程度の大きな電流が必要となる。

今回研究グループは,半導体ガリウム砒素にマンガン原子を数%加えた強磁性半導体GaMnAsという材料の垂直方向に磁化した単層の極薄膜に,3.4×105Acm–2の小さな電流密度の電流を流すだけで,磁化の向きが反転することを初めて発見した。この物質には,磁石としての性質(強磁性)とともに,物質内部に比較的大きなスピン軌道相互作用が存在することがわかっており,それが低電流密度での磁化反転を可能にしていると推測している。

また,この物質は,原子レベルで平坦な薄膜を形成する分子線エピタキシー法で作られた高品質な単結晶であり,電流が流れる際にスピンの散乱が少ないことも,今回の低い電流密度での磁化反転の実現につながっているものと考えている。

さらに,スピン軌道相互作用を十分に活かすためには物質の電子構造も重要で,大きな波数をもつ電子(または正孔)が伝導に寄与している必要があることがわかった。GaMnAsでは,不純物バンドと呼ばれる波数の大きな正孔が集まるエネルギー帯を電流が流れることがわかっており,それが効率的な電流誘起磁化反転を引き起こしている要因となっているという。

今回の研究での磁化反転に必要な電流密度は,磁化反転の研究で一般的に用いられている強磁性金属薄膜と非磁性金属薄膜からなる2層構造で必要とされる典型的な電流密度(約107A/cm2)よりも2桁程度小さな値だとする。

研究グループは今回の研究により,今後より低電力で磁化反転できる新たな材料開発が加速していくことが期待できるとしている。

その他関連ニュース

  • 京大ら,ダイヤの励起子のスピン軌道相互作用を解明 2024年02月27日
  • 理研,シリコン量子ビットの高精度読み出しを実現 2024年02月14日
  • 東大,極性単結晶薄膜を塗布形成できる有機半導体開発 2024年01月30日
  • 広島大ら,電子/スピンを観察する走査型顕微鏡開発 2024年01月12日
  • 神大ら,五重項の室温量子コヒーレンスの観測に成功 2024年01月05日
  • 茨城大ら,Φ50mmのMg2Si単結晶開発に成功 2023年12月13日
  • 東大,量子コンピューター2種の時間発展を比較 2023年12月05日
  • 農工大,脱離したRb原子のスピン移行量を光で測定 2023年09月25日